
CSE 413
Programming Languages &
Implementation

Hal Perkins
Autumn 2012

Multiple Inheritance, Interfaces, Mixins

1

Overview

•  Essence of object-oriented programming: inheritance,
overriding, dynamic-dispatch

•  Classic inheritance includes specification (types) and
implementation (code)

•  What about multiple inheritance
(>1 superclass)?
–  When does it make sense?
–  What are the issues?

Inheritance Models

•  Single Inheritance: at most 1 superclass
–  Subclass inherits methods and state from

superclass; can override methods, add more
methods and instance variables

•  Multiple Inheritance: >1 superclass
–  Why? Factor different traits/behavior into small

classes, then extend several of them
–  But hard to use well (e.g., C++)

•  Typical problem: big, brittle inheritance graph,
methods migrate to bloated superclasses over
time; becomes (very) hard to make changes

Inheritance Models

•  Java-style interfaces: >1 type
–  Doesn’t apply to dynamically-typed languages
–  Class “inherits” (has) multiple types, but…
– …only inherits code from one parent class
–  Fewer problems than multiple inheritance

•  Mixins: >1 “source of methods”
–  Similarities to multiple inheritance – many of the

goodies with fewer(?) problems

Multiple Inheritance

•  If single inheritance is so useful, why not allow multiple
superclasses?
–  Semantics are often awkward (next few slides)
–  Static type checking is harder (not discussed)
–  Efficient implementation is harder (hints next time)

•  Is it useful? Sure:
–  Color3DPoint extends 3DPoint, ColorPoint
–  StudentAthlete extends Student, Athlete

•  Naïve view: subclass has all fields and methods of all
superclasses; avoids copying code

Trees, DAGs, and Diamonds

•  Class hierarchy forms a graph
–  Nodes are classes
–  Edges from subclasses to superclasses
–  Single inheritance: a tree
–  Multiple inheritance: a DAG (but no cycles

allowed)
•  Diamonds

–  With multiple inheritance, may be multiple
ways to show that Y is a (transitive)
subclass of X

–  If all classes are transitive subclasses of
e.g. Object, multiple inheritance always
leads to diamonds

A

B C D

E

X

V W

Z

Y

Multiple Inheritance: Semantic Issues

•  What if multiple superclasses define the same
message m or field f?
–  Classic example: Artists, Cowboys,
ArtistCowboys

•  All have a draw method
•  The draw methods access a (the?) pocket

instance variable

Multiple Inheritance: Methods

•  If V and Z both define method m, which
one does Y inherit? What does super
mean?
–  Can use directed resends: Z::m

•  What if X defines m that Z overrides but V
does not?
–  Can do the same thing, but often we

want Z to “win” (e.g., ColorPt3D
wants Pt3D’s overrides)

X

V W

Z

Y

Multiple Inheritance: Methods

•  Some options for method m:
–  Reject subclass as ambiguous – but

this is too restrictive (esp. w/
diamonds)

–  “Left-most superclass wins” – too
restrictive (want per-method flexibility)
+ silent weirdness

–  Require subclass to override m (can
use explicitly qualified calls to
inherited methods)

X

V W

Z

Y

Multiple Inheritance: Fields

•  Options for field f: One copy of f or
multiple copies?
–  Multiple copies: what you want if
Artist::draw and Cowboy::draw
use inherited fields differently (e.g.,
both use a pocket variable)

–  Single copy: what you want for
Color3dPoint x and y coordinates

•  C++ provides both kinds of inheritance
–  Either two copies always, or one copy if

field declared in same (parent) class

X

V W

Z

Y

Java-Style Interfaces

•  In Java we can define interfaces and classes can
implement them
–  Interface describes methods and types
–  Interface is a type – program can create variables,

parameters, etc. with that type
–  If class C implements interface I, then instances of

C have type I but must define everything in I
(directly or via inheritance)

Interfaces are all about Types

•  A Java class can have implement any number of
interfaces (and also has one superclass – Object if
nothing else declared)

•  Interfaces provide no methods or fields – no
duplication problems
–  If I1 and I2 both include some method m,

implementing class must provide it somehow
•  But this doesn’t allow what we want for
Color3DPoints or ArtistCowboys
–  No code inheritance/reuse possible

Java Interfaces and Ruby

•  Concept is totally irrelevant for Ruby
–  We can already send any message to any object

(dynamic typing)
–  We need to get it right (can always ask an object

what messages it responds to)
–  We don’t type-check implementers

Why no interfaces in C++?

•  C++ allows methods and classes to be abstract
–  Specified in class declaration but with no

implementation (same as Java)
–  Called pure virtual methods in C++

•  Abstract classes can be extended but not instantiated
•  So a class can extend multiple abstract classes

–  Same as implementing interfaces
•  But if that’s all you need, you don’t need multiple

inheritance
–  Multiple inheritance is not just typing

Mixins

•  A mixin is a (just) collection of methods
–  Less than a class: no fields, constructors,

instances, etc.
–  More than an interface: methods have

implementations
•  Languages with mixins typically allow one superclass

and any number of mixins (e.g., Ruby)

Mixin Semantics

•  Including a mixin makes its methods part of the class
–  Mixins extend or override in the order they are

included in the class definition
–  More powerful than helper methods because mixin

methods can access methods and instance
variables not defined in the mixin using self

•  Not quite as powerful as multiple inheritance, but…
•  Clear semantics, great for certain idioms

(Enumerate and Comparable using each, <=>)

Next time

•  Implementing inheritance, dynamic dispatch

•  Then on Friday: wrapup, review, the end.

17

